



The diagram shows triangle XYZ in which XY = 22.5 cm and  $\angle XYZ = 34^{\circ}$ . Given that the area of the triangle is  $100 \text{ cm}^2$ , find the length XZ.

$$f(x) = x^3 + 6x^2 + px + q$$

Given that f(4) = 0 and f(-5) = 36

- (a) Find the values of p and q
- (b) Factorise f(x) completely.

$$f(x) = 2x^3 - 13x^2 + 8x + 48$$

(a) Prove that (x - 4) is a factor of f(x).

(2)

(b) Hence, using algebra, show that the equation f(x) = 0 has only two distinct roots.

(4)



Figure 2

Figure 2 shows a sketch of part of the curve with equation y = f(x).

(c) Deduce, giving reasons for your answer, the number of real roots of the equation

$$2x^3 - 13x^2 + 8x + 46 = 0$$

(2)

Given that k is a constant and the curve with equation y = f(x + k) passes through the origin,

(d) find the two possible values of k.

(2)



## A parallelogram PQRS has area 50 cm<sup>2</sup>

## Given

- PQ has length 14 cm
- QR has length 7 cm
- angle SPQ is obtuse

## find

- (a) the size of angle SPQ, in degrees, to 2 decimal places,
- (b) the length of the diagonal SQ, in cm, to one decimal place.

$$f(x) \equiv px^3 + qx^2 + qx + 3$$
.

Given that (x + 1) is a factor of f(x),

a find the value of the constant p.

Given also that when f(x) is divided by (x - 2) the remainder is 15,

**b** find the value of the constant q.



The diagram shows the curve with the equation  $y = 6 + 7x - x^3$ . Find the coordinates of the points where the curve crosses the x-axis.



Figure 1

Figure 1 shows a sketch of a triangle ABC with AB = 3x cm, AC = 2x cm and angle  $CAB = 60^{\circ}$ 

Given that the area of triangle ABC is  $18\sqrt{3}$  cm<sup>2</sup>

- (a) show that  $x = 2\sqrt{3}$
- (b) Hence find the exact length of BC, giving your answer as a simplified surd.



The diagram above shows the triangle ABC, with AB = 6 cm, BC = 4 cm and CA = 5 cm.

- (a) Show that  $\cos A = \frac{3}{4}$ .
- (b) Hence, or otherwise, find the exact value of  $\sin A$ .

$$g(x) = 4x^3 - 12x^2 - 15x + 50$$

(a) Use the factor theorem to show that (x + 2) is a factor of g(x).

(2)

(b) Hence show that g(x) can be written in the form  $g(x) = (x + 2) (ax + b)^2$ , where a and b are integers to be found.

(4)



Figure 2

Figure 2 shows a sketch of part of the curve with equation y = g(x)



Given that (x + 2) is a factor of f (x), find the value of the constant a.