1128 =20 denys to go l

2 A six-sided dice is rolled 800 times.
Experimental Probability
The table below shows the relative frequency of scoring a six after different numbers of rolls.

Number of rolls	Relative frequency of a six	
100	0.3	30%
200	0.26	26%
300	0.27	27%
500	0.23	23%
800	0.25	25%

(a) How many times was a six scored after 300 rolls?

Show how you obtained your answer.

$$
27 \% \text { \& } 300
$$

Answer \qquad [2]
(b) Which relative frequency from the table gives the best estimate of the probability of scoring a six when this dice is rolled?

Explain your answer.

Answer \qquad 0.25

Reason \qquad there are most rolls
(c) How many sixes would you expect to get if a fair six-sided dice was rolled 300 times?

$$
\frac{1}{6} \times 300
$$

$$
\begin{align*}
x & =0.561561561 \\
1000 x & =561.561561561 \cdots \\
x & =0.561561561 \cdots \tag{2}\\
999 x & =561 \\
x & =\frac{561}{999}
\end{align*}
$$

