Andy is investigating the lateness of the trains that arrive at Manchester Piccadilly.
(a) Explain why it is sensible for Andy to collect secondary data for his investigation.

Andy found out data on the lateness of each of 238 trains arriving at Manchester Piccadilly from London on Monday to Friday for one week.

The histogram below was drawn using Andy's data.

A negative time for a train means that the train arrived early at Manchester Piccadilly. In the week, 14 trains arrived early.
(b) Find how many of the 238 trains did not arrive more than 10 minutes late at Manchester Piccadilly.

For a long distance journey, such as London to Manchester Piccadilly, a train is only considered to be late when it arrives more than 10 minutes late.

Andy says that more than 1 in 3 trains from London arrive late at Manchester Piccadilly.
(c) Determine whether or not Andy is correct.

You should comment on the reliability of your conclusion.

The table shows, for one train company, some data about the amount of time by which 100 trains were delayed.

Time delayed, t (minutes)	Frequency
$0<t \leqslant 5$	40
$5<t \leqslant 15$	22
$15<t \leqslant 20$	18
$20<t \leqslant 30$	8
$30<t \leqslant 50$	12

Here is a partly completed histogram for the data in the table.

By using the histogram or the table, calculate an estimate for the median value.
[3 marks]
\qquad
\qquad
\qquad

The frequency table below shows the masses, in kilograms, of all suitcases weighed at an airport security section before one flight.

Q3

Mass, $\boldsymbol{m}(\mathbf{k g})$	Frequency			
$0 \leqslant m<5$	1			
$5 \leqslant m<10$	14			
$10 \leqslant m<15$	37			
$15 \leqslant m<20$	54			
$20 \leqslant m<25$	17			
$25 \leqslant m<35$	2			

(a) Give one advantage and one disadvantage of using a grouped frequency table.

Advantage \qquad
\qquad
Disadvantage \qquad
(e) Draw a histogram to display the data from the frequency table.

Sam records the typical operating temperature (in ${ }^{\circ} \mathrm{C}$) of different types of engines as shown in the table below.
Q4

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Frequency			
$30<x \leqslant 40$	4			
$40<x \leqslant 45$	7			
$45<x \leqslant 50$	8			
$50<x \leqslant 60$	6			
$60<x \leqslant 80$	10			

Use the data in the table to complete the histogram below.

The grouped frequency table below shows the distribution of ages of a sample of people who live in Lisburn.

Q5

Age, \boldsymbol{A}, (years)	Frequency		
$0 \leqslant A \leqslant 14$	180		
$15 \leqslant A \leqslant 29$	300		
$30 \leqslant A \leqslant 44$	105		
$45 \leqslant A \leqslant 74$	90		
$75 \leqslant A \leqslant 89$	15		
$A \geqslant 90$	0		

(a) Explain why the width of the $15 \leqslant A \leqslant 29$ class is 15
\qquad
\qquad
\qquad
(b) On the grid below, draw a histogram to illustrate the distribution of ages of the sample of people who live in Lisburn.

